top of page

PUBLICATIONS

2017

 

“Understanding and Exploiting the Interface of Semiconductor Nanocrystals for Light Emissive Applications” , P. Kambhampati, T. Mack, and L. Jethi, ACS Photonics 4, 412 (2017). DOI: 10.1021/acsphotonics.6b00951

​

“Simple Fiber-Based Solution for Coherent Multidimensional Spectroscopy in the Visible Regime”, H. Seiler, S. Palato, B. Schmidt, and P. Kambhampati, Opt. Lett. 42, 3 (2017). DOI: 10.1364/OL.42.000643

​

"Investigating the Influence of Ligands on the Surface-state Emission of Colloidal CdSe Quantum Dots", T. Mack, L. Jethi, M. Krause, and P. Kambhampati, Proc. SPIE 10114, (2017). DOI: 10.1117/12.2253441

 

2016

 

“The Effect of Exciton-Delocalizing Thiols on Intrinsic Dual Emitting Semiconductor Nanocrystals”, L. Jethi, T. G. Mack, M. M. Krause, S. Drake, and P. Kambhampati, ChemPhysChem 17, 665 (2016). DOI: 10.1002/cphc.201501049


“Interfacial Electronic Structure in Graded Shell Nanocrystals Dictates Their Performance for Optical Gain”, B. R. Walsh, J. I. Saari, M. M. Krause, T. G. Mack, R. Nick, S. Coe-Sullivan, and P. Kambhampati, J. Phys. Chem. C 120, 19409 (2016). DOI: 10.1021/acs.jpcc.6b05836


“Surface and Interface Effects on Non-Radiative Exciton Recombination and Relaxation Dynamics in CdSe/Cd,Zn,S Nanocrystals”, B. R. Walsh, J. I. Saari, M. M. Krause, R. Nick, S. Coe-Sullivan, and P. Kambhampati, Chem. Phys. 471, 11 (2016). DOI: 10.1016/j.chemphys.2015.11.004

​

2015


“Toward Ratiometric Nanothermometry via Intrinsic Dual Emission from Semiconductor Nanocrystals”, L. Jethi, M. M. Krause, and P. Kambhampati, J. Phys. Chem. Lett. 6, 718 (2015). DOI: 10.1021/acs.jpclett.5b00024

​

“Kilohertz Generation of High Contrast Polarization States for Visible Femtosecond Pulses via Phase-Locked Acousto-Optic Pulse Shapers” , H. Seiler, B. Walsh, S. Palato, A. Thai, V. Crozatier, N. Forget, and P. Kambhampati, J. Appl. Phys. 118, 103110 (2015). DOI: 10.1063/1.4929954


“On the Kinetics and Thermodynamics of Excitons at the Surface of Semiconductor Nanocrystals: Are There Surface Excitons?”, P. Kambhampati, Chem. Phys. 446, 92 (2015). DOI: 10.1016/j.chemphys.2014.11.008


“Ligand Surface Chemistry Dictates Light Emission from Nanocrystals”, M. M. Krause, L. Jethi, T. G. Mack, and P. Kambhampati, J. Phys. Chem. Lett. 6, 4292 (2015). DOI: 10.1021/acs.jpclett.5b02015


“Linking Surface Chemistry to Optical Properties of Semiconductor Nanocrystalsl”, M. M. Krause and P. Kambhampati, Phys. Chem. Chem. Phys. 17, 18882 (2015). DOI: 10.1039/c5cp02173a


“Unraveling Photoluminescence Quenching Pathways in Semiconductor Nanocrystals”, M. M. Krause, T. G. Mack, L. Jethi, A. Moniodis, J. D. Mooney, and P. Kambhampati, Chem. Phys. Lett. 633, 65 (2015). DOI: 10.1016/j.cplett.2015.05.017


“Controlling the Surface of Semiconductor Nanocrystals for Efficient Light Emission from Single Excitons to Multiexcitons”, B. R. Walsh, J. I. Saari, M. M. Krause, R. Nick, S. Coe-Sullivan, and P. Kambhampati, J. Phys. Chem. C 119, 16383 (2015). DOI: 10.1021/acs.jpcc.5b03853

​

2014


Correction to “Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra (vol 4, Pg 3316, 2013)”, J. Mooney and P. Kambhampati, J. Phys. Chem. Lett. 5, 3497 (2014). DOI: 10.1021/jz502066v


“Connecting the Dots: The Kinetics and Thermodynamics of Hot, Cold, and Surface-Trapped Excitons in Semiconductor Nanocrystals”, J. Mooney, M. M. Krause, and P. Kambhampati, J. Phys. Chem. C 118, 7730 (2014). DOI: 10.1021/jp502102a

 

2013


“Chemical and Thermodynamic Control of the Surface of Semiconductor Nanocrystals for Designer White Light Emitters”, M. M. Krause, J. Mooney, and P. Kambhampati, ACS Nano 7, 5922 (2013). DOI: 10.1021/nn401383t


“Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra”, J. Mooney and P. Kambhampati, J. Phys. Chem. Lett. 4, 3316 (2013). DOI: 10.1021/jz401508t


“A Microscopic Picture of Surface Charge Trapping in Semiconductor Nanocrystals”, J. Mooney, M. M. Krause, J. I. Saari, and P. Kambhampati, J. Chem. Phys. 138, (2013). DOI: 10.1063/1.4807054


“Control of Phonons in Semiconductor Nanocrystals via Femtosecond Pulse Chirp-Influenced Wavepacket Dynamics and Polarization”, J. Mooney, J. I. Saari, A. M. Kelley, M. M. Krause, B. R. Walsh, and P. Kambhampati, J. Phys. Chem. B 117, 15651 (2013). DOI: 10.1021/jp406323f  - Invited article for Michael Fayer Festschrift


“Ultrafast Electron Trapping at the Surface of Semiconductor Nanocrystals: Excitonic and Biexcitonic Processes”, J. I. Saari, E. A. Dias, D. Reifsnyder, M. M. Krause, B. R. Walsh, C. B. Murray, and P. Kambhampati, J. Phys. Chem. B 117, 4412 (2013). DOI: 10.1021/jp307668g


“Terahertz Bandwidth All-Optical Modulation and Logic Using Multiexcitons in Semiconductor Nanocrystals”, J. I. Saari, M. M. Krause, B. R. Walsh, and P. Kambhampati, Nano Lett. 13, 722 (2013). DOI: 10.1021/nl3044053


“Two-Color Two-Dimensional Electronic Spectroscopy Using Dual Acousto-Optic Pulse Shapers for Complete Amplitude, Phase, and Polarization Control of Femtosecond Laser Pulses”, P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, J. Phys. Chem. A 117, 6264 (2013). DOI: 10.1021/jp400603r


“Biography of Paul F. Barbara”, G. Walker, P. Kambhampati, C. Silva, and J. D. Simon, J. Phys. Chem. B 117, 4157 (2013). DOI: 10.1021/jp401719t

​

“Challenge to the Deep-Trap Model of the Surface in Semiconductor Nanocrystals” , J. Mooney, M. M. Krause, J. I. Saari, and P. Kambhampati, Phys. Rev. B 87, 081201 (2013). DOI: 10.1103/PhysRevB.87.081201

​

“Spectral and Spatial Contributions to White Light Generation from InGaN/GaN Dot-in-a-Wire Nanostructures”, Y. Kamali, B.R. Walsh, J.D. Mooney, H. Nguyen, C. Brosseau, R. Leonelli, Z. Mi, and P. Kambhampati, J. Appl. Phys., 114, 136305 (2013). DOI: 10.1063/1.4826618

​

2012


“Improving Optical Gain Performance in Semiconductor Quantum Dots via Coupled Quantum Shells”, E. A. Dias, J. I. Saari, P. Tyagi, and P. Kambhampati, J. Phys. Chem. C 116, 5407 (2012). DOI: 10.1021/jp211325x


“Multiexcitons in Semiconductor Nanocrystals: A Platform for Optoelectronics at High Carrier Concentration”, P. Kambhampati, J. Phys. Chem. Lett. 3, 1182 (2012). DOI: 10.1021/jz300239j


“Independent Control of Electron and Hole Localization in Core/Barrier/Shell Nanostructures”, P. Tyagi and P. Kambhampati, J. Phys. Chem. C 116, 8154 (2012). DOI: 10.1021/jp212158a

​

2011

“State-Resolved Observation in Real Time of the Structural Dynamics of Multiexcitons in Semiconductor Nanocrystals”, S.L. Sewall, R.R. Cooney, E.A. Dias, P. Tyagi, and P. Kambhampati, Phys. Rev. B 84, 235304 (2011). DOI:10.1103/PhysRevB.84.235304

​

“Hot Exciton Relaxation Dynamics in Semiconductor Quantum Dots: Radiationless Transitions on the Nanoscale”, P. Kambhampati, J. Phys. Chem. C 115, 22089 (2011). DOI: 10.1021/jp2058673 - Invited Feature Article, Cover Article.

 

“Fundamentals of the Quantum Confinement Effect”, P. Kambhampati, Book chapter in Handbook of Photoluminescent Semiconductor Materials – Taylor & Francis, (2011) - Invited

 

“Colloidal and Self-Assembled Quantum Dots for Optical Gain.”, P. Kambhampati, Z. Mi, and R.R. Cooney, Nanoscience Comprehensive - Elsevier, In: Andrews DL, Scholes, GD and Wiederrecht GP (eds.), Comprehensive Nanoscience and Technology, volume 1, pp. 493–542 Oxford: Academic Press (2011).


“False Multiple Exciton Recombination and Multiple Exciton Generation Signals in Semiconductor Quantum Dots Arise from Surface Charge Trapping”, P. Tyagi and P. Kambhampati, J. Chem. Phys. 134, (2011). DOI: 10.1063/1.3561063

​

“Large Piezoelectric Response in Semiconductor Quantum Dots Revealed by Coherent Acoustic Phonons”, P. Tyagi, R. Cooney, S. Sewall, D.M. Sagar, J. Saari, and P. Kambhampati, In Ultrafast Phenomena XVII, Oxford University Press, M. Chergui, D. Jonas, E. Riedle, R. Schoenlein, A. Taylor, Eds. (2011).

 

“Probing Multiexcitons in Quantum Dots via Femtosecond Pump/probe and Two-dimensional Electronic Spectroscopy”, P. Tyagi, S. Sewall, P. Wen, J Saari, D. Arias, K. Nelson, and P. Kambhampati, In Ultrafast Phenomena XVII, Oxford University Press, M. Chergui, D. Jonas, E. Riedle, R. Schoenlein, A. Taylor, Eds. (2011).

​

“Unraveling the Structure and Dynamics of Excitons in Semiconductor Quantum Dots”, P. Kambhampati, Acc. Chem. Res. 44, 1 (2011). DOI: 10.1021/ar1000428 - Invited

​

2010


“State-Resolved Exciton Dynamics in Quantum Dots”, P. Kambhampati, Proc. SPIE., 7758 (2010). DOI: 10.1117/12.862016


“Controlling Piezoelectric Response in Semiconductor Quantum Dots via Impulsive Charge Localization”, P. Tyagi, R. R. Cooney, S. L. Sewall, D. M. Sagar, J. I. Saari, and P. Kambhampati, Nano Lett. 10, 3062 (2010). DOI: 10.1021/nl101605r

​

2009


“State-Resolved Manipulations of Optical Gain in Semiconductor Quantum Dots: Size Universality, Gain Tailoring, and Surface Effects”, R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, J. Chem. Phys. 131, 164706 (2009). DOI: 10.1063/1.3254199

​

“Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots”, S.L. Sewall, A. Franceschetti, R.R. Cooney, A. Zunger, and P. Kambhampati, Phys. Rev. B., 80, 081310(R) (2009). DOI: 10.1103/PhysRevB.80.081310

 

“Experimental tests of effective mass vs. atomistic pictures of quantum dot electronic structure”, S.L. Sewall, R.R. Cooney, and P. Kambhampati, Appl. Phys. Lett., 94, 243116 (2009).

 

“Gain control in semiconductor quantum dots via state-resolved optical pumping”, R.R. Cooney, S.L. Sewall, D.M. Sagar, and P. Kambhampati, Phys. Rev. Lett, 102, 127404 (2009). DOI:10.1103/PhysRevLett.102.12740

​

2008

“Single Dot Spectroscopy of Core/barrier/shell Nanocrystals”, E.A. Dias, A. Petrik, D.S. English, and P. Kambhampati, J. Phys. Chem. C, 112, 14229 (2008) - Letter.


“Single Dot Spectroscopy of Two-Color Quantum Dot/quantum Shell Nanostructures”, E. A. Dias, A. F. Grimes, D. S. English, and P. Kambhampati, J. Phys. Chem. C 112, 14229 (2008). DOI: 10.1021/jp806621q


“State-Resolved Exciton - Phonon Couplings in CdSe Semiconductor Quantum Dots”, D. M. Sagar, R. R. Cooney, S. L. Sewall, and P. Kambhampati, J. Phys. Chem. C 112, 9124 (2008). DOI: 10.1021/jp803386g

​

“Size Dependent, State-Resolved Studies of Exciton-Phonon Couplings in Strongly Confined Semiconductor Quantum Dots” , D. M. Sagar, R. R. Cooney, S. L. Sewall, E. A. Dias, M. M. Barsan, I. S. Butler, and P. Kambhampati, Phys. Rev. B 77, 235321 (2008). DOI: 10.1103/PhysRevB.77.235321


“State-Resolved Studies of Biexcitons and Surface Trapping Dynamics in Semiconductor Quantum Dots”, S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, D. M. Sagar, and P. Kambhampati, J. Chem. Phys. 129, 084701 (2008). DOI: 10.1063/1.2971181

​

2007

​

“Noise Analysis and Noise Reduction Methods in Kilohertz Pump-Probe Experiments Noise Analysis and Noise Reduction Methods in Kilohertz Pump-Probe Experiments” , K. E. H. Anderson, S. L. Sewall, R. R. Cooney, P. Kambhampati, K. E. H. Anderson, S. L. Sewall, R. R. Cooney, and P. Kambhampati, Rev. Sci. Instrum. 78, 073101 (2007). DOI: 10.1063/1.2755391

​

“Unified Picture of Electron and Hole Relaxation Pathways in Semiconductor Quantum Dots” , R. R. Cooney, S. L. Sewall, E. A. Dias, D. M. Sagar, K. E. H. Anderson, and P. Kambhampati, Phys. Rev. B 75, 245311 (2007). DOI: 10.1103/PhysRevB.75.245311

​

“Breaking the Phonon Bottleneck for Holes in Semiconductor Quantum Dots” , R. R. Cooney, S. L. Sewall, K. E. H. Anderson, E. A. Dias, and P. Kambhampati, Phys. Rev. Lett. 98, 177403 (2007). DOI: 10.1103/PhysRevLett.98.177403


“Light Harvesting and Carrier Transport in Core/barrier/shell Semiconductor Nanocrystals”, E. A. Dias, S. L. Sewall, and P. Kambhampati, J. Phys. Chem. C 111, 708 (2007). DOI: 10.1021/jp0658389

​

2006

​

“State-to-State Exciton Dynamics in Semiconductor Quantum Dots” , S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, and P. Kambhampati, Phys. Rev. B 74, 235328 (2006). DOI: 10.1103/PhysRevB.74.235328

bottom of page